

Probabilistic Temporal Inference on Reconstructed 3D Scenes

Grant Schindler Frank Dellaert

Georgia Institute of Technology

The World Changes Over Time

How can we reason about time in structure from motion problems?

Temporal Inference Problem

- 1. When was each photograph taken?
- 2. When did each building first appear?
- 3. When was each building removed?

Set of Photographs:

Temporal Inference Problem

Temporal Inference Problem

Given observations **Z** and scene geometry **X**, what are the temporal parameters **T**?

Structure from Motion

3D Reconstruction

Images

3D Point Cloud

Structure from Motion

Bundler Software by Noah Snavely (Snavely et al SIGGRAPH 2006)

Grouping Points into Buildings

3D Point Cloud

3D Buildings

Point Grouping

Group points according to both:

- a. Distance < threshold in 3D
- b. Observed simultaneously in 1+ images

Building Geometry

- 1. Convex hull of each group
- 2. Fit ground plane to camera centers
- 3. Extend convex hulls to ground

3D Reconstruction: Points vs. Objects

Lower Manhattan

454 images 83,860 points 960 Buildings

Reasoning About Time: From Constraint Satisfaction...

Schindler et al. CVPR 2007. Inferring Temporal Order of Images from 3D Structure.

- Key Idea: Visibility of 3D points constrains image ordering
- Disadvantage: Only relative image ordering
- Disadvantage: Perfect observations required
 - rules out fully automatic reconstruction, inherently noisy

...to Probabilistic Temporal Inference

Maximize
$$P(T|Z,X)$$

T = time parameters

Z = observations

X = scene geometry

$$P(T|Z,X) \propto P(Z|T,X)P(T)$$

$$\uparrow \qquad \uparrow$$

Observation Probability

Visibility Reasoning

Noisy Building Observations

Image Date Prior

"Circa 1910"

"Undated"

Uncertain Dates

P(T) - Image Date Prior

Date Sources:

EXIF tags

database annotations

Historical dates often uncertain

Undated: $P(t_j)=$ Uniform

Otherwise: $P(t_j) = N(\mu, \sigma^2)$

Estimated Date

Uncertainty

"May 1970"

"Undated"

"Circa 1910"

Observation Probability Model

$$P(Z|T,X) = \prod_{z_{ij} \in Z} P(z_{ij}|T,X)$$
 Time Parameters Hypothesized Binary variable: Geometry Known Was object i observed in image j ?

Viewability: Is object *i* within the field of view of camera *j*?

Existence: Did object *i* exist at the time image *j* was captured?

Occlusion: Is object *i* occluded by some other object(s) in image *j*?

- Markov Chain Monte Carlo (MCMC) Sampling
 - Propose to move an image date
 - Analytically solve building date intervals
 - Evaluate P(T|Z,X)
 - Accept or reject move

- Markov Chain Monte Carlo (MCMC) Sampling
 - Propose to move an image date
 - Analytically solve building date intervals
 - Evaluate P(T|Z,X)
 - Accept or reject move

- Markov Chain Monte Carlo (MCMC) Sampling
 - Propose to move an image date
 - Analytically solve building date intervals
 - Evaluate P(T|Z,X)
 - Accept or reject move

- Markov Chain Monte Carlo (MCMC) Sampling
 - Propose to move an image date
 - Analytically solve building date intervals

Results: Full Temporal Optimization

Synthetic Scene

Results: Full Temporal Optimization

Downtown Atlanta (102 Images)

Results: Full Temporal Optimization

Downtown Atlanta

Results: Leave-One-Out Image Dating

Lower Manhattan

Error < 5 years for 48% images

Estimated Date: 1937.2 Given Date: 1935

Results: Building Date Intervals

Conclusions and Future Work

- -Automatic, probabilistic temporal inference method
- -Results for synthetic scene and 2 challenging real data sets

Future Work:

Feature correspondence across time challenging

- -Find more data, densely sampled in space and time
- -Design time-invariant features

Thank you!