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Abstract

Modern structure from motion techniques are capable
of building city-scale 3D reconstructions from large image
collections, but have mostly ignored the problem of large-
scale structural changes over time. We present a general
framework for estimating temporal variables in structure
from motion problems, including an unknown date for each
camera and an unknown time interval for each structural el-
ement. Given a collection of images with mostly unknown or
uncertain dates, we use this framework to automatically re-
cover the dates of all images by reasoning probabilistically
about the visibility and existence of objects in the scene. We
present results on a collection of over 100 historical images
of a city taken over decades of time.

1. Introduction
Recent progress in 3D reconstruction from images has

enabled the automatic reconstruction of entire cities from
large photo collections [1], and yet these techniques largely
ignore the fact that scenes like cities can change drastically
over time. In this paper, we introduce a language for repre-
senting time-varying structures, and a probabilistic frame-
work for doing inference in these models. The goal of this
framework is to enable the recovery of a date for each im-
age and a time interval for each object in a reconstructed 3D
scene.

As institutions digitize their archival photo collections,
millions of photographs from the late 19th and 20th cen-
turies are becoming available online, many of which have
little or no precise date information. Recovering the date of
an image is therefore an important task in the preservation
of these historical images, and one currently performed by
human experts. In addition, having a date on every image in
a 3D reconstruction would allow for intuitive organization,
navigation, and viewing of historical image collections reg-
istered to 3D city models. Discovering the time intervals of
existence for every object in a scene is also an essential step
toward automatically creating time-varying 3D models of
cities directly from images. Toward this end, we introduce a

Figure 1: We build a 3D reconstruction automatically from
images taken over multiple decades, and use this recon-
struction to perform temporal inference on images and 3D
objects. The left image was taken in 1956 while the right
photo was captured in 1971 from nearly the same viewpoint.

probabilistic framework for performing temporal inference
on reconstructed 3D scenes.

1.1. Related Work

A number of recent approaches to large-scale urban
modeling from images have produced impressive results
[2, 1, 15], though none have yet dealt explicitly with time-
varying structure. In [13], a historical Ansel Adams photo-
graph is registered to a reconstructed model of Half Dome in
Yosemite National Park, but there is no notion of time in this
process – only the location of the image is recovered. Addi-
tionally, since we are dealing with historical photographs,
approaches that rely on video [2], densely captured data
[15], or additional sensors are not directly applicable to our
problem.

Current non-automated techniques for dating historic
photographs include identifying clothing, hairstyles, and
cultural artifacts depicted in images [8, 9], and physical
examination of photographs for specific paper fibers and



chemical agents [7]. Our approach deals with digitized pho-
tographs and contain few human subjects, so we instead
opt to reason about the existence and visibility of semi-
permanent objects in the scene.

Visibility and occlusion reasoning have a long history
in computer vision with respect to the multi-view stereo
problem [5, 6]. A space carving approach is used in [6]
to recover the 3D shape of an object from multiple images
with varying viewpoints. This involves reasoning about oc-
clusions and visibility to evaluate the photo-consistency of
scene points, and relies upon the assumption that the space
between a camera center and a visible point is empty. More
recently in [3], visibility is used to provide evidence for
the emptiness of voxels in reconstructing building interi-
ors. Our visibility reasoning approach differs from all of
these in that both the potentially visible objects and poten-
tially occluding objects vary with time, thus invalidating all
the visibility assumptions that apply to static scenes. In our
approach, we will be searching for a temporal story that ex-
plains why we do and don’t see each object in each image.

The most similar work to ours is that of [11], which
proposed a constraint-satisfaction method for determining
temporal ordering of images based on manual point corre-
spondences. This approach suffers from a number of weak-
nesses: only an image ordering is recovered, there is no way
to incorporate known date information, the occlusion model
is static, manual correspondences are required, and there is
no concept of objects beyond individual points. In contrast,
our approach offers a number of advantages:

Time-Dependent Occlusion Geometry. A major prob-
lem with the method of [11] is the assumption of a fixed set
of occluding geometry. Here, we treat the uncertain scene
geometry itself as the occlusion geometry, which compli-
cates visibility reasoning but which is necessary for dealing
with real-world scenes.

Continuous, Absolute Time. Our method recovers a
specific continuous date and time for each image and is able
to explicitly deal with missing and uncertain date informa-
tion while incorporating known dates into the optimization
problem. [11] only deals with orderings of images.

Automatic 3D Reconstruction. The manual correspon-
dences in [11] act as perfect observations, which are not
present in an automatic reconstruction. Automated feature
matching cannot ensure that every feature is detected in ev-
ery image, so we must deal with missing measurements.

Object-Based Reasoning. Rather than reasoning about
the visibility of points as in [11], we reason about entire 3D
objects which can be composed of numerous points, or any
other geometric primitives. Crucially, each object explicitly
has its own time interval of existence.

In addition, the method of [11] turns out to be a special
case of our more general probabilistic framework. Through
developing our probabilistic temporal inference framework,

we simultaneously gain insight into the previous approach
of [11] while creating a more powerful method for reason-
ing about temporal information in reconstructed 3D scenes.

2. Approach
The traditional Structure from Motion (SfM) problem is

concerned with recovering the 3D geometry of a scene and
of the cameras viewing that scene. In this work, in addition
to this spatial information we are also interested in recover-
ing temporal information about the scene structure and the
cameras viewing the scene. This temporal information con-
sists of a date for each camera and a time interval for each
3D point in the scene. Though we can theoretically solve
for both the spatial and temporal SfM parameters simulta-
neously, we choose here to decompose the problem into two
steps, first solving traditional SfM (Section 4.1) and then
solving the temporal inference problem (Section 3).

2.1. Time-Varying Structure Representation

We first define the representation we will use to perform
temporal inference on reconstructed 3D scenes. Given a set
of n images I1..n registered to a set of m 3D objects O1..m,
we wish to estimate a time t associated with each image,
and a time interval (a,b) associated with each 3D object.
We represent the entirety of these temporal parameters with
T = (T O,TC) where

T O = {(ai,bi) : i = 1..m}

is a set of time intervals, one for each object, and

TC = {t j : j = 1..n}

is a set of timestamps, one for each image.
We assume that we are given a set of geometric parame-

ters X = (XO,XC) for the scene, where XO = {xi : i = 1..m}
describes the geometry of each object and XC = {c j : j =
1..n} describes the camera geometry for each image. The
approach is general and these 3D objects can be, for ex-
ample, points, planes, or polygonal buildings. The only
requirement is that each 3D object must be detectable in
images and must be capable of occluding other objects.

2.2. Sources of Temporal Information

In this work, we assume that for some images we have
at least uncertain temporal information. Without any time
information, the best we can do is determine an ordering as
in [11]. In practice, we will usually have a mix of dated
images, undated images, and images with uncertain date es-
timates.

Modern digital cameras nearly always embed the precise
date and time of the photograph in the Exif tags of the re-
sulting image file. This includes the year, month, day, hour,



Figure 2: Point Groupings. The 3D points that result from Structure from Motion are unsuitable for use in visibility reasoning
because (1) they are not reliably detected in every image, (2) they don’t define solid occlusion geometry, and (3) there are too
many of them. We solve all these problems by grouping 3D points into the objects about which we will reason. Points which
are physically close and have been observed simultaneously in at least one image are grouped into these larger structures.

minute, and second at which the image was captured. Thus,
we have nearly a decade of time-stamped digital photos
compared to the previous 17 decades of photography which
lacks this precise temporal information. Digitized histori-
cal photographs will have associated date information only
when a human archivist manually enters such a date into a
database. When available, precise dates can be found in the
original photographer’s notes, but the more common case is
that a human exercises judgment to place a date label like
“circa 1960” on the photograph.

We examined the date information on a set of 337 histor-
ical images from the Atlanta History Center and found that
less than 11% of the images have a known year, month, and
day. Of all images, 47% are “circa” some year, 29% have a
known year, 6% have a known year and month, 3% are “be-
fore” or “after” some year, and 4% are completely undated.
This lack of precise temporal information for a majority of
historical photographs motivates our work.

Given a photograph I j labeled with a year y j, month
m j, and day d j, the date of the photograph t j ∈ R is rep-
resented as t j = y j + f (m j,d j)/365. This is the value of
the year plus the fractional amount of a year accounted for
by the day and month where f () is a function from month
and day to sequential day of the year. We make this ex-
plicit because historical photographs are often labeled with
a year only, for example 1917, in which case we only know
that the true date of the photograph lies within an interval
t j ∈ [1917.0,1918.0). In such a case, we take the midpoint
of the interval as an initial estimate of t j.

3. Probabilistic Temporal Inference Model

Our goal is to estimate the time parameters T of a set
of images and objects given the geometric parameters X of
a reconstructed 3D scene. In addition, we assume that we
are given a set of observations Z = {zi j : i = 1..m, j = 1..n}
where each zi j is a binary variable indicating whether ob-
ject i was observed in image j. In what follows, we will
be searching for the set of temporal parameters T that best

explain the observations Z, telling us why we see certain ob-
jects in some images but not in others. In Bayesian terms,
we wish to perform inference on all temporal parameters T
given observations Z and scene geometry X ,

P(T |Z,X) ∝ P(Z|T,X)P(T ) (1)

In the following two sections, we discuss the likelihood
term P(Z|T,X) first and then the prior term P(T ).

3.1. Observation Model

The key term which we need to evaluate is the likelihood
P(Z|T,X). Because the observations are conditionally in-
dependent given T , we can factor the likelihood as:

P(Z|T,X) = ∏
zi j∈Z

P(zi j|T,X) (2)

This is the product, over all objects in all images, of the
probability of each individual observation zi j given T and X .
Evaluation of the terms P(zi j|T,X) relies on three factors:

Viewability: Is object i within the field of view of cam-
era j? This only depends on the geometry X , more specif-
ically for each measurement zi j we can deterministically
evaluate the function InFOVi j(X) that depends only on the
object and camera geometry xi and c j.

Existence: Did object i exist at the time image j was
captured? This only depends on the temporal information
T , as given T we can deterministically evaluate the func-
tions Existencei j(T ) = ai ≤ t j ≤ bi.

Occlusion: Is object i occluded by some other object(s)
in image j? This attribute, Occludedi j(T,X), depends on
both temporal information T and geometry X . Specifically,
Occludedi j(T,X) depends upon all time intervals T O, all
object geometry XO, and camera parameters (t j,c j).

Below we discuss each of these factors in turn.

3.1.1 Viewability

Based on viewability alone, we can factor the likelihood (2)
in two parts: one that depends on the temporal information



T and one that does not. Indeed, if we define the viewable
set ZV =

{
zi j|InFOVi j(X)

}
, we have

P(Z|T,X) = k ∏
zi j∈ZV

P(zi j|T,X) (3)

where k is a constant that does not depend on T , and hence
is irrelevant to our inference problem. In practice all the
measurements zi j not in the viewable set ZV are 0, so the
above simply states that we do not even need to consider
them. However, the viewability calculation has to be done
to be able to know which measurements zi j to disregard.

3.1.2 Existence

The viewable set ZV can, given the temporal information
T , be further sub-divided into two sets ZN and ZP, where
ZP =

{
zi j|zi j ∈ ZV ∧Existencei j(T )

}
corresponds to the set

of image-object pairs (i, j) that co-exist given T , and its
complement ZN = ZV \ ZP is the set of all measurements
predicted to be negative because the object and image did
not co-exist. Crucially, note that this division depends on
the temporal parameters T . Hence, the likelihood (3) can
be further factored as

P(Z|T,X) = k ∏
zi j∈ZN

PN(zi j) ∏
zi j∈ZP

PP(zi j|T,X)

The first product above dominates the likelihood, as it is
very improbable that an object i will be reported as visible
in camera j if in fact it did not exist at the time image j
was taken. In other words, PN(zi j = 1) = ρ , with the false
positive probability ρ a very small number. Hence the like-
lihood stemming from the observations in ZN is simply

P(ZN |T,X) = ∏
zi j∈ZN

PN(zi j) = ρ
FP(1−ρ)CN (4)

where FP and CN are the number of false positives and
correct negatives in the set ZN , with FP+CN = |ZN |. Note
that in the case ρ = 0 the likelihood P(ZN |T,X) evaluates to
zero for any assignment T violating an existence constraint.

3.1.3 Occlusion

Finally, if object i does exist when image j is taken, then
the probability PP(zi j|T,X) that it is observed depends upon
whether it is occluded by other objects in the scene, i.e.,

PP(zi j|T,X) = η ×P(Occludedi j|t j,c j,T O,XO) (5)

with η the detection probability for unoccluded objects.
Since we rely on SfM algorithms, even unoccluded objects
might not be reconstructed properly: the reasons include
failure during feature detection or matching, or occlusion
by an un-modeled object such as a tree or car. Although we

use a constant term η here, this probability could be evalu-
ated on a per object/per image basis using the known scene
and camera geometry. For example, we could capture the
notion that a small object is unlikely to be observed from a
great distance despite being in the field of view.

The occlusion factor P(Occludedi j|t j,c j,T O,XO) can in
turn be written as the probability of object i not being oc-
cluded by any other object k,

P(Occludedi j|t j,c j,T O,XO) =

∏
k 6=i

(1−P(Occlusioni jk|t j,c j,ak,bk,xk,xi))

where Occlusioni jk is a binary variable indicating whether
or not object i is occluded by object k in image j. The prob-
ability P(Occlusioni jk|.) can vary from 0 to 1 to account
for partial occlusions of objects. With this model, the over-
all probability P(Occludedi j|t j,c j,T O,XO) that object i has
been occluded by something in image j increases as more
individual objects k partially occlude object i. A specific
occlusion model will be discussed further in Section 4.3.

3.2. Temporal Prior

The term P(T ) in Equation (1) is a prior term on tempo-
ral parameters. This can be further broken down into image
date priors P(TC) = ∏ j=1..n P(t j) and object time interval
priors P(T O) = ∏i=1..m P(ai,bi).

If we have any prior knowledge about when an image
was taken, we account for it in the individual P(t j) prior
terms. We may know an image’s time down to the second,
we may just know the year, or we may have a multi-year
estimate like “circa 1960”. In all such cases, we choose a
normal distribution P(t j) = N(µ,σ2) with a σ appropriate
to the level of uncertainty in the given date. When we have
no date information at all for a given image, we use a uni-
form distribution appropriate to the data set – for example,
a uniform distribution over the time between the invention
of photography and the present. Though not used here, ob-
ject interval priors P(ai,bi) can also be chosen to impose an
expected duration for each object.

3.3. Framework Extensions

An added benefit of this probabilistic temporal inference
framework is that it becomes easy to extend the model to
account for additional domain knowledge (though we do
not use these extensions here). We can introduce a term
P(XO|T O) which encodes information about the expected
heights of buildings given their construction dates, exploit-
ing the fact that buildings have gotten progressively taller
at a known rate over the last century, or a term P(XC|TC)
which incorporates prior information on the expected al-
titude of cameras given image dates, again exploiting the
fact that we have records describing when airplanes, he-
licopters, and tall rooftops came into being and enabled



Figure 3: Object Observations. Our framework reasons
about observations of 3D objects in images. We group the
3D points from SfM into larger structures and count the de-
tection of at least one point in the group as an observation
of the entire structure. Regions highlighted in green (above)
represent observed objects in this image. False negative ob-
servations are undesirable but unavoidable, and we account
for them in our probabilistic framework.

higher-altitude photographs to be captured. Both of these
extensions would require the measurement of a known ob-
ject to be specified in the scene in order to reason in non-
arbitrary units.

Finally, we can introduce a term P(I|TC) specifying a
distribution on image features for photos captured at a given
time. Such features might include color or texture statis-
tics, or even detections of cultural artifacts like cars or
signs which are typical of specific historical eras, properties
which already allow humans to roughly estimate the date of
a photograph of an unfamiliar city scene. This would be es-
pecially significant in the case of historic cities which have
not structurally changed much during the era of photogra-
phy, where visibility reasoning alone may not be sufficient
to pinpoint the date of an image.

3.4. Temporal Inference Algorithms

We are interested in finding the the optimal value T ∗ for
the temporal parameters according to the maximum a pos-
teriori (MAP) criterion:

T ∗ = argmax
T

P(T |Z,X)

Observe that, based on the above formulation, given a hy-
pothesized set of temporal parameters T we can directly
evaluate Equation (1) to get the probability of the hypoth-
esized time parameters. Therefore, we perform temporal
inference by sampling time parameters to find those that
maximize the probability of the data.

3.4.1 Markov Chain Monte Carlo

We adopt a Markov Chain Monte Carlo (MCMC) approach
to draw samples from the posterior distribution P(T |Z,X)
in order to find the optimal set of parameters T ∗. Follow-
ing the Metropolis-Hastings [4] algorithm, we start from an
initial set of temporal parameters T and propose a move to
T ′ in state space by changing one of the t j, ai, or bi values
according to a proposal density Q(T ′;T ) of moving from T
to T ′. We accept such a move according to the acceptance
ratio:

α = min
{

P(T ′|Z,X)Q(T ;T ′)
P(T |Z,X)Q(T ′;T )

,1
}

(6)

Our proposals involve randomly choosing a time parameter
and adding Gaussian noise to its current value, such that our
proposal distribution is symmetric, and the acceptance ratio
is simply the ratio of the posterior probability P(T |Z,X) of
each set of temporal variables. Following this approach,
we draw samples from the posterior probability P(T |Z,X),
keeping track of our best estimate for T ∗ as we do so.

We make this sampling approach more efficient by sam-
pling only on image dates TC, and analytically solving for
the optimal object time intervals T O for a given configura-
tion of TC. To do so, we note that the dominant likelihood
part given by Equation (4) factors over objects i:

∏
zi j∈ZN

PN(zi j) = ∏
i

 ∏
j|zi j∈ZN

ρ
FPi(1−ρ)CNi


Given the image dates TC, we can eliminate false positives
FPi for each object i by setting

ai ≤ min
{

t j|zi j = 1
}

and bi ≥ max
{

t j|zi j = 1
}

In other words, and obvious in hindsight, we make each ob-
ject’s interval such that it starts before its first “sighting” and
ends after its last “sighting”. In practice we found that ex-
tending the intervals beyond the minimum range indicated
above has a negative effect on the solution: while extending
an interval can help “explain away” negative observations of
other objects, this also automatically incurs a (1−η) likeli-
hood penalty for every image in which the object is now not
observed. This dominates the potentially beneficial effects.

Hence, for every proposed change to the image dates TC,
we adapt the object intervals (ai,bi) to minimize the exis-
tence constraints (4). This changes the set ZP for which the
occlusion/detection likelihood (5) needs to be evaluated. It
is computationally efficient to propose to only change one
image date t j at a time, in which case only objects in view of
camera j have their intervals adjusted, and calculating the
acceptance ratio (6) is easier. However, occlusion effects
will still have non-local consequences: in Section (4.3) we
discuss how to deal with those efficiently as well.



(a) May 1971 (b) Jan 1969 (c) Dec 1969

Figure 4: Optimal Image Dates. These images were originally labeled as “circa 1965”, 1868, and 1967 in a historical image
database created by human experts. Our temporal inference method is able to improve upon these date labels as indicated
below each image. Building construction records show these new dates estimates are more accurate than the human estimates.

4. Implementation

The above formulation is a general temporal inference
framework applicable to a variety of situations. For the spe-
cific case of reasoning about cities over decades of time, we
must specify how we recover geometry X using SfM and
what kind of objects O we are dealing with, as well as how
these objects are detected and how they occlude each other.

4.1. Structure from Motion

Before performing any temporal inference, we run tradi-
tional SfM to recover the camera geometry XC and a set of
3D points which will form the basis for the geometry of our
3D objects XO. For this purpose, we use the Bundler SfM
software from Snavely [12] with SIFT implementation from
VLFeat [14]. Depending on the connectivity of the match
table, there may be multiple disconnected reconstructions
that result from this SfM procedure. In our case, we are not
interested in the reconstruction with the largest number of
images, but rather the one containing images which span
the largest estimated time period.

4.2. Object Model

We must define the set of 3D objects O1..m on which to
perform temporal inference. The output of SfM is a large
number of 3D points, but in a large-scale urban reconstruc-
tion, it makes more sense to reason directly about 3D build-
ings than 3D points. Segmenting point clouds into buildings
is a difficult task, complicated here by the fact that multiple
buildings can exist in the same location separated only by
time. To solve this problem, we perform an oversegmen-
tation of the points into point-groups, analogous to super-
pixels used in 2D segmentation [10]. Specifically, if two
3D points are closer than a threshold dgroup and are also
observed simultaneously in at least Ngroup images, we link
them together and then find connected components among
all linked points (see Figure 2).

Grouping points in this way leads to several benefits.
First, we can count an observation of any one point in a
group as an observation of the whole group (see Figure 3).
This increases the chance of successfully detecting each ob-
ject in as many images as possible, reducing false nega-
tives. By reducing the number of 3D objects, we also vastly
reduce the computational burden during occlusion testing.
For the purposes of visibility reasoning, we triangulate each
group of points (based on either a 3D convex hull or a
union of view-point specific Delaunay triangulations) and
use this triangulated geometry to determine which groups
potentially occlude each other.

4.3. Occlusion Model

We must determine which objects in our scene poten-
tially occlude which other objects, as this information plays
a pivotal role in evaluating the probability of a given con-
figuration of temporal parameters as described in Section
3.1.3. This involves the creation of an occlusion table, a
three-dimensional table of size m×m× n which specifies,
for each image, the probability P(Occlusioni jk|X ,T ) that
object k occludes object i in image j if both objects exist
at the same time. The occlusion table is extremely sparse,
but it is the most expensive computation in the entire algo-
rithm due to the fact that m2n geometric calculations must
be made to compute it.

This expensive occlusion table computation is where we
pay the price for not committing to a static set of occlusion
geometry as in [11]. As our model’s time parameters vary
during optimization, the number of unique occlusion sce-
narios is 2m where the number of objects m reaches into the
thousands. We cannot precompute occlusion information
for all these scenarios, nor do we want to compute occlu-
sion events on the fly while evaluating the probability of a
specific set of temporal parameters – this slows down eval-
uation by an order of magnitude.

Occlusion Computation As described above, we have



a list of 3D triangles associated with each object for oc-
clusion purposes. Rather than explicitly computing ray-
triangle intersections between each camera center and each
structure point for every triangle in the occlusion geome-
try as in [11], we use an image-space approach. We first
render a binary image for each object in each camera – de-
spite the large number of rendered images (m×n) this is a
very fast operation either on the GPU or in software. Each
image is white where the potentially occluding object’s tri-
angles project into the image and black everywhere else.
By projecting each 3D structure point into each image, we
can quickly detect potential occlusion events by examining
the pixel color at the projected location of each point. If
a point projects onto a white pixel, further depth tests are
performed to determine occlusion, but in our experiments
greater than 99.9% of points project onto black background
pixels, which means no further tests are necessary, saving
enormous computation. Note that we have computed point-
object occlusion events. To compute object-object occlu-
sion probabilities, we do the following: when an object k
occludes any points belonging to another object i, the proba-
bility of occlusion P(Occlusioni jk|X ,T ) is equal to the frac-
tion of object i points which were occluded by object k.

Having pre-computed all potential occlusion events in
this way, at run time we use the current time parameter es-
timate T to determine which of these occlusions actually
occur at the time of each image in the model. Importantly,
using this time-dependent occlusion approach, we can not
only explain away missing observations as in [11] but if an
object is observed when the model indicates that it should
be occluded, this provides strong evidence that the occluder
itself should not exist at the present time.

5. Results
We perform temporal inference experiments on both syn-

thetic and real data. For temporal priors, we use a normal
distribution with σ = 10.0 if an image is “circa” some time,
σ = 1.0 if given a year, σ = 0.1 if given a year and month,
and σ = 0.001 if a full date is specified. The proposal den-
sity for MCMC is a normal distribution with σ = 50. In all
experiments, we use point-grouping parameters Ngroup = 1
with threshold dgroup depending upon each scene’s arbitrar-
ily scaled geometry.

For the synthetic scene, we have 100 images, taken over
an 80 year period, observing 2112 3D points lying on the
surface of 30 synthetic buildings. Of these 100 images,
33% have known date, 33% are “circa” some year, and
34% have completely unknown dates. The initial date for
each image is, respectively, set to its known value, rounded
to the nearest decade, or uniformly sampled between 1930
and 2010. We draw 20,000 samples of temporal parameters
using MCMC, keeping the most probable sample, which
reduces the root mean square error (over all images with re-

(a) 1960

(b) 1965

(c) 1970

(d) All Points

Figure 5: Object Time Intervals. By performing temporal
inference, we recover a time interval for every object in the
scene. Here, we use these recovered time intervals to visu-
alize the scene at different points in time (a)(b)(c) from the
viewpoint of a given photograph. In contrast, the raw point
cloud (d) resulting from SfM has no temporal information.

spect to ground truth dates) from 19.31 years for the initial
configuration to just 2.87 years for our solution.

For the real scene, starting from a collection of 490 im-
ages of Atlanta dating from the 1930s to the 2000s, the re-
sult of SfM is a set of 102 images registered to 89,619 3D
points and spanning the 1950s, 1960s, and 1970s (see Fig-
ure 1). We use the above point-grouping procedure to cre-



ate 3,749 objects from the original 89,619 points. We note
that the largest reconstructed set of images was actually a
set of 127 images all taken in the 2000s. Our images were
not uniformly distributed across time, with a notable lack of
images from the 1980s and 1990s which are not yet well-
represented in either historical databases or online photo-
sharing collections. We hypothesize that a denser sampling
of images in both time and space would be required to link
these reconstructions together.

For each image in our reconstruction, we initialized tem-
poral parameters according to the historical date informa-
tion accompanying the photographs and used the MCMC
sampling procedure described above to arrive at the most
probable temporal solution for the entire set of 102 images
in the reconstruction. On a 2.33 GHz Intel Core 2 Duo, eval-
uating one sample takes 0.06 seconds, so we can evaluate
1000 samples per minute. The occlusion table itself takes
on average 5.5 seconds per image, and is a one-time opera-
tion totaling less than 10 minutes for this dataset. Note that
actual ground truth is difficult to achieve for this historical
data – most images with missing dates have already been
labeled by human experts to the best of their ability, and it
is these very labels which are uncertain. Instead, we high-
light a few illustrative examples (Figure 4) to demonstrate
our method’s effectiveness on real-world data:
• An image labeled “circa 1965” was moved to May

1971 in the most probable time configuration. Upon
further inspection of the photograph’s dozens of build-
ings, the image depicts a building completed in 1971,
as well as buildings from 1968 and 1966.

• For an image originally dated 1868 (apparently a data
entry error in the historical database with the intended
date of 1968) the resulting date using our method was
January 1969, much nearer to the truth.

• An image labeled 1967 was moved up to December
of 1969. Upon examination, this image primarily
depicts a building which began construction in 1969
and another building which was demolished in 1970.
While we can confirm this using building construction
records, our method is able to perform this reasoning
from images alone.

After performing temporal inference on all image dates and
object time intervals, we visualize the results (Figure 5) by
choosing a point in time and rendering only those objects
which exist at this time according to the recovered time in-
tervals. When we view the 3D reconstruction from the same
viewpoint but at different points in time, the successfully re-
covered time-varying structure becomes clear.

6. Conclusion
We have presented a general probabilistic temporal in-

ference framework and applied it to a city-scale 3D re-

construction spanning multiple decades. In addition, we
have demonstrated the first completely automatic method
for image dating and recovery of time-varying structure
from images. In future work, we hope to reconstruct vastly
larger image sets spanning larger time periods, to employ
more building-like object models, and to develop SfM tech-
niques that explicitly deal with the unique problems of large
changes in structure and appearance over time.
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