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Abstract

In this paper, we examine the problem of internet video
categorization. Specifically, we explore the representation
of a video as a “bag of words” using various combinations
of spatial and temporal descriptors. The descriptors incor-
porate both spatial and temporal gradients as well as opti-
cal flow information. We achieve state-of-the-art results on
a standard human activity recognition database and demon-
strate promising category recognition performance on two
new databases of approximately 1000 and 1500 online user-
submitted videos, which we will be making available to the
community.

1. Introduction
In this paper, we examine the general problem of inter-

net video categorization. We make no assumptions about
the videos we attempt to categorize: each video may be
recorded from a hand-held video camera, a cellphone, a
webcam, a television broadcast, or even an animated car-
toon. An excellent source of such a wide variety of videos
is the growing number of user-submitted video websites
which have become popular over the last few years. As
such, we explore the video categorization problem on two
new databases of approximately 1000 and 1500 online user-
submitted videos which we will be making available to the
community.

Specifically, we explore the representation of a video as
a “bag of words”, based on recent successes of this ap-
proach in both activity recognition [2, 13, 17] and video
scene retrieval [15]. In addressing the general problem of
video category recognition, we open up the possibility of
directly comparing the motion-based methods of activity
recognition with the appearance-based methods used in ob-
ject, scene, and location recognition tasks [3, 10, 9]. One
of the goals of this work is to determine how general video
category recognition differs from the more commonly stud-
ied activity recognition problem. For this reason, we make
as few assumptions as possible about what types of inter-
est points and descriptors are well suited for the task of

Figure 1. 100 videos from a database of approximately 1500 user-
submitted online videos across 15 categories – we perform video
category recognition in a bag of words framework.

video category recognition. Instead, we define a number
of spatial, temporal, and spatio-temporal interest points to
be combined with descriptors based on gradient orientation
and optical flow. The performance of each combination is
then evaluated for the video recognition task.

The systematic enumeration and evaluation of video in-
terest point and descriptor combinations is a primary con-
tribution of our work. This approach is justified by a
new state-of-the-art performance result on the KTH hu-
man activity recognition database, and promising video
category recognition performance for two user-submitted
video databases. In addition we present a novel temporally-
varying optical flow histogram descriptor for both space-
time and temporal interest points, and a novel temporal in-
terest point detector based on optical flow magnitude.

1.1. Related Work

Inspired by the success of local features in static 2D
images [11], much recent work in activity recognition has
been based upon the use of local features detected in the 3D
space-time volume defined by a video. Space-time interest
points were first introduced in [8] by extending Harris cor-



ner detection to find large changes in image intensity in both
space and time. Another space-time interest point detector
based on 1-D Gabor filters was introduced in [2].

Once space-time interest points are detected, descriptors
of the space-time volume around the interest point have tra-
ditionally been based on either image gradients or optical
flow. Oriented histograms of differential optical flow were
used in [1] to detect humans in video. Simple volumetric
features based on differences of optical flow in neighboring
regions were used for visual event detection in [6]. In [7]
spatio-temporal shape and flow correlation is performed on
over-segmented videos to recognize human activities.

Our approach shares much in common with the work of
Dollar et al. [2]. In contrast to previous approaches to be-
havior recognition which relied upon detection and segmen-
tation, [2] used sparse spatio-temporal features for behavior
recognition, and [13] extended the same methods to the un-
supervised case. The work in [2] explored a number of de-
scriptors for spatio-temporal interest points, including those
based on space-time gradients, optical flow, and image in-
tensities. These were placed into a bag-of-words framework
where descriptors are clustered to form a vocabulary and
recognition is performed in the space of word-frequency
histograms. Here, we adopt the space-time interest point
detector and space-time gradient PCA descriptor of [2].

In addition to the above activity recognition work, there
is also a body of work on content-based video retrieval
as exemplified by the TREC Video Retrieval Evaluation
project [16] which focuses on the related problem of seg-
menting and detecting shots of specific objects and settings
in multi-hour videos. The Video Google work of Sivic and
Zisserman [15] is an example of such an approach, and
in this work, we compare activity-recognition-inspired ap-
proaches against purely appearance based approaches such
as this.

2. Approach
Given a large database of videos (each labeled with a

category) and a new unlabeled video, we would like to in-
fer the category of the new video. For this task, we have
chosen to convert each video to a bag-of-words representa-
tion. To accomplish this, we detect interest points in each
video and compute a descriptor for each interest point. We
use k-means to cluster the descriptors from all videos into
a vocabulary consisting of N words. For each video we
construct a normalized word-frequency histogram that de-
scribes how often each vocabulary word occurs in the video.
This histogram can be viewed as an N-dimensional repre-
sentation of the entire video and all classification is per-
formed in this space. In the next section, we discuss the
specific interest points and descriptors used to form a vari-
ety of these vocabularies, and therefore a variety of bag-of-
words representations for each video.

3. Interest Points
For any given video, we can detect three kinds of inter-

est points: spatio-temporal, temporal, and spatial. While
spatial interest points (e.g. those used with SIFT [11]) and
spatio-temporal interest points (as used in activity recogni-
tion) enjoy widespread use, purely temporal interest points
have not been popular in video analysis (though [17] uses
them as an intermediate stage in spatio-temporal interest
point detection). We include temporal interest points here
for completeness of the evaluation. Each type of interest
point is explained in detail below.

3.1. Spatio-Temporal Interest Points

Spatio-temporal interest points are detected using the 1-
D Gabor filter method of [2]. They are detected at a single
scale, using σ = 2.0 pixels. The Gabor filter responses form
a 3D volume in space and time and we take the maxima in
this space as interest point candidates. We reject any in-
terest points whose filter responses are less than 1.1 times
greater than the filter responses of all neighboring points.
The resulting interest region is a volume measuring 48x48
pixels in spatial extent and 30 frames in time, centered on
the interest point. A typical 400x300 pixel, 500-frame video
generates 3000 spatio-temporal interest points.

3.2. Temporal Interest Points

Temporal interest points are detected at multiple tempo-
ral scales and always include the entire spatial extent of all
frames that fall within the corresponding region of temporal
interest. We first compute the optical flow at every frame
of the video using the Lucas-Kanade [12] method on 3x3
pixel regions spaced at 4 pixel intervals in both the x and
y directions. We define the motion mt in a given frame t
as the sum of the magnitude of the optical flow at all pix-
els in the frame. We construct the 2D difference of Gaus-
sian (DoG) [11] based on the 1D motion signal m1..T and
search for extrema in this space. We examine 20 levels in
the DoG. At level s, the motion signal is convolved with a
zero-mean Gaussian with σ = 1.2s, where the number of
frames included in the temporal region of interest is 8σ . A
typical 400x300 pixel, 500-frame video generates roughly
300 temporal interest points, mostly at smaller scales.

3.3. Spatial Interest Points

Spatial interest points are computed for individual
frames of video using the familiar Difference of Gaussian
(DoG) method in [11]. They are computed at multiple spa-
tial scales, but do not have any extent in time and exist only
at a single frame. In all results reported below, spatial inter-
est points are detected for one in every 15 frames of video.
A typical 400x300 pixel, 500-frame video generates 6000
spatial interest points.



4. Descriptors
The interest points defined above define space-time vol-

umes (as described in section 3) to which we may assign
a number of descriptors. Note that for space-time interest
points, the space-time volume of interest is explicitly de-
fined above. For temporal interest points, the space-time
volume of interest encompasses the entirety of the video
frame for every frame in the temporal region of interest. For
spatial interest points, the space-time volume of interest in-
cludes only the spatial region immediately surrounding the
interest point (as defined by the scale of the point) and only
in the frame in which the point was detected.

4.1. Space-Time Gradient

At every pixel in the space-time volume surrounding an
interest point, we compute the image gradient in the x, y,
and time directions. While the x and y gradients are typi-
cal image edges, the time gradients describe the change in
a pixel’s intensity from one frame to the next. If we con-
catenate all x, y, and time gradients together the result is a
descriptor with thousands of dimensions. In order to reduce
the dimensionality of the descriptor and to make it robust to
small variations, we adopt two methods: principal compo-
nents analysis (PCA) and histogramming.

4.1.1 Space-Time Gradient PCA

As in [2], we perform PCA on the large concatenated vec-
tor of x, y, and time gradients to get a small number of vec-
tors that describe the main modes of variation of the data.
We take the first 50 principal components and describe the
region by the amount to which the gradients project onto
each of these principal components. For computational ef-
ficiency, we downsample the space-time volume of interest
to 5x5 pixels by 11 frames and so have to compute only
4x4x10=160 pixel differences, multiplied by 3 to account
for each of the x, y, and time gradients. The descriptor is 50
dimensions and normalized to unit length.

4.1.2 Space-Time Gradient Histograms

Alternatively, we can compute histograms that describe the
orientation of edges in the xy, xt, and yt planes that cut
through the space-time volume of interest. We can under-
stand these histograms by analogy with the SIFT descrip-
tor, which captures the distribution of edge orientations in
an image region by computing a direction and magnitude
corresponding to the x and y gradient at each pixel in the
region. Because we deal with a space-time volume, we can
histogram along the yt and xt planes in the exact same way,
resulting in 3 histograms of 10 bins each, resulting in a 30-
dimensional descriptor. Each of the 3 histograms is normal-
ized to unit length independently.

4.2. Optical Flow Orientation Histogram

Here we use the same optical flow computation that was
used in detecting temporal interest points. For a given
space-time volume, we uniformly divide the volume into
8 temporal regions. For each region, we compute an 8-
bin histogram of optical flow orientation. This results in an
8x8=64 dimensional descriptor of the motion in the space-
time volume of interest, which we normalize to unit length.

4.3. SIFT

The descriptor for all purely spatial interest points is the
standard SIFT descriptor from [11]. Video searching via
spatial interest points with SIFT descriptors was a method
originally introduced in [15].

5. Classification
We use two classification techniques: 1-nearest neighbor

(NN) and centroid-based document classification [4] which
performs extremely well in textual document classification
by simply representing a class with the centroid of all doc-
uments that belong to the class. In all cases, we use the χ2

distance metric [2]:

Dist(a,b) =
N

∑
i=1

(ai−bi)(ai−bi)
2(ai +bi)

to compare the N-dimensional normalized word-frequency
histograms which represent any two videos a and b. In the
NN case, we compute the distance from a query video to all
database videos and assign to the query video the category
of the minimum-distance database video. In the centroid
case, we represent a category as the mean of all histograms
of videos in the given category. For M categories, we then
have just M histograms to compare with the histogram of
the query video. These two techniques were chosen for their
speed in both training and classification.

6. Results
We tested several combinations of interest points and de-

scriptors on three separate classification tasks. We combine
spatio-temporal interest points with the PCA and histogram
versions of the space-time gradient descriptor as well as the
optical flow orientation histogram. We combine temporal
interest points with space-time gradient PCA and the op-
tical flow orientation histogram. Since the spatial interest
points have no temporal extent, we only combine them with
the SIFT descriptor.

6.1. Data Sets

We test the above methods on three data sets. The first
set consists of 1483 videos assembled by downloading the



Interest Point Descriptor KTH Sports General
ST STG-PCA 82.6 27.2 21.8
ST Flow 80.6 28.7 19.5
ST STG-Hist 73.9 25.7 19.0
T STG-PCA 60.2 26.3 17.3
T Flow 52.1 25.2 18.6
S SIFT 43.8 32.0 17.8

Table 1. Centroid-Based Classification Results. In all tables, we use S for spatial, T for temporal, ST for spatio-temporal, and STG for
space-time gradient. In all tables, the amounts reported are the percentage of the data correctly classified. The best individual-vocabulary
results for the KTH and General video data sets reside here, and are indicated in bold text.

Interest Point Descriptor KTH Sports General
ST STG-PCA 71.2 35.9 20.6
ST Flow 78.6 31.3 18.2
ST STG-Hist 70.6 37.2 21.8
T STG-PCA 45.1 28.3 15.0
T Flow 46.2 30.4 16.8
S SIFT 42.5 38.3 18.9

Table 2. Nearest Neighbor Classification Results. The best individual-vocabulary results for Sports reside here, indicated in bold text. See
Table 1 for an explanation of the notation used in this table.

most popular 100 videos from each of the 15 general video
categories on an online video sharing website. The cate-
gories are animals, animation, autos, blogs, comedy, com-
mercials, entertainment, games, movies, music, people, pol-
itics, sports, technology, and travel. We call this the General
video data set.

The second set of 967 videos consists of the top 100
videos returned from each of 10 searches for the names of
different sports. The sports are baseball, basketball, bowl-
ing, football, karate, skiing, soccer, surfing, swimming, and
tennis. We call this the Sports video data set.

The videos in these two datasets are all 400x300 pixels
and we perform classification based on the first 500 frames
of each video (i.e. a 60 megapixel space-time volume). All
videos were categorized, sometimes “incorrectly”, by the
users who submitted them – thus a number of potentially
irrelevant videos for each of the 15 general categories and
10 sports are included in both the training and testing sets
of all results presented below.

The third data set is the KTH Human Motion Database,
consisting of 598 videos showing 25 participants perform-
ing 6 actions in 4 different situations. The six actions
are walking, jogging, running, handclapping, handwaving,
and boxing. We include this standard dataset so that we
may compare our method directly against other similar ap-
proaches extracting descriptors from video for the purpose
of classification.

6.2. Experiments

We conducted 78 experiments testing various combina-
tions of interest points and descriptors. In all experiments,

we use a 600 word vocabulary. We tested vocabularies of
size 300, 500, 600, 700, and 800, and achieved the best per-
formance with 600. In addition, we test concatenations of
the word-frequency histograms (independently normalized)
of several descriptors. For example, we append the 600-
dimensional histogram of space-time gradient PCA word
frequencies with the 600-dimensional histogram of optical
flow orientation histogram word frequencies to arrive at a
new 1200-dimensional representation of the video by sim-
ple concatenation. In our experiments, we find that this
alone can increase the categorization performance by a sig-
nificant amount. For numerical results, see Tables 1-4. In
the next section, we provide more details and discussion of
the experimental results.

7. Discussion
The relatively similar performance of the space-time gra-

dient PCA and optical flow histogram descriptors was un-
expected given the findings in [2] that space-time gradi-
ent PCA significantly outperforms optical flow histograms
in activity recognition performance. The primary distinc-
tion between our flow histograms and those used in pre-
vious work is that we compute the optical flow histogram
for multiple temporal regions within a space-time volume
rather than for multiple spatial regions – thus our descrip-
tor emphasizes how motion changes over time. Note that in
several instances in the tables above, our optical flow his-
togram approach out-performed space-time gradient PCA
as a descriptor for space-time interest points.

The results of combining space-time gradient PCA and
optical flow are also surprising and significant. In previous



work [2], the superiority of space-time gradient PCA was
used as justification to throw out optical flow information
altogether. However, our exhaustive experimentation shows
that concatenating the bags of words for these two descrip-
tors results in significant improvement over either descriptor
individually. Note that it is not the case that concatenation
of any two descriptors will necessarily lead to better classifi-
cation rates, as in several cases above combining SIFT with
other descriptors leads to a net decrease in performance.

Another surprising result is that for the Sports dataset,
the best individual performance was achieved by a his-
togram of SIFT features detected in the individual frames
of the video – that is, by ignoring all temporal informa-
tion and treating the video as a group of unordered images.
It is somewhat unintuitive that the motion information in
action-packed sports videos is less useful than appearance
for video categorization. However, we can make sense of
this result by observing that videos within a single sports
category have more uniform visual appearance than general
videos, due to the highly structured physical environments
in which most sports take place. In contrast, SIFT performs
poorly on the KTH activity recognition database in which
a person’s appearance is unrelated to the activity they are
performing.

In contrast to the Sports results, on both the KTH
and General datasets, the best individual performance is
achieved using the space-time interest points with space-
time gradient PCA descriptor. In a broad sense, the KTH
result confirms the findings of [2], while the General re-
sult provides evidence that the success of space-time inter-
est points and space-time gradient PCA descriptors carries
over to the case of general videos, and is not restricted to
the highly structured environments and shooting conditions
of most human activity recognition work. The success of
this particular combination of interest point and descriptor
for general videos is significant as a large motivator of this
work was to discover whether activity recognition results
would carry over to online video categorization.

In general, the purely temporal interest points per-
formed more poorly than spatio-temporal interest points,
though purely temporal interest points do out-perform
purely spatial interest points (SIFT) for General videos un-
der centroid-based document classification.

Finally, note that with respect to descriptors for spatio-
temporal interest points, all three types of descriptor (op-
tical flow orientation histogram, space-time gradient PCA,
and space-time gradient histogram) outperformed the oth-
ers on at least one dataset using one classifier. Thus, at the
end of this experiment, we cannot say that one of these de-
scriptors should be used universally to the exclusion of the
others. This leads us to our second set of experiments in
which we combine multiple interest-point-descriptor pairs
by simply concatenating their normalized histograms.

Figure 2. Confusion Matrices for KTH, Sports, and General video
data sets (top left, top right, bottom). Each cell indicates which
videos from one category (the row) were classified as belonging
to another category (the column). All categories are in the order
indicated in Section 6.1. Best viewed at high magnification.

7.1. Combinations of Features

For the KTH, Sports, and General datasets, recognition
performance was raised by 4.7%, 4.4%, and 5.1% respec-
tively by concatenating the normalized histograms of two
or more interest-point-descriptor pairs (see Tables 3 & 4).
This is quite a significant result, and as discussed above,
this improvement is not the inevitable result of such a con-
catenation. Instead, it reflects the fact that we have identi-
fied certain descriptors which produce mutually beneficial
encodings of the same data (i.e. that each descriptor alone
may result in a different subset of the dataset being cor-
rectly classified.) The consistency of this result across all
three video databases suggests an extremely simple method
of uniting a wide variety of interest points and descriptors
into a common framework while boosting performance at
the same time.

7.2. KTH Activity Recognition Database

Using the above approach, we have exceeded the current
state of the art results for the KTH database by achieving
a categorization rate of 87.3%, compared to 81.2% in [2],
81.5% in [13], and 86.83% in [14] under exactly the same
experimental conditions. We note that [5] recently achieved
a rate of 91.7% under different experimental conditions.



STG-PCA Flow STG-Hist SIFT KTH Sports General
x x 79.9 32.3 24.8

x x 82.3 34.7 24.1
x x 75.9 30.5 22.0

x x x 78.6 31.5 25.2
x x 78.6 27.7 22.5

x x 87.3 31.5 25.3
x x x 86.9 35.1 26.9

Table 3. Centroid-Based Results for Concatenated Word-Frequency Histograms. In this table, all descriptors are combined with spatio-
temporal interest points, except for SIFT which uses spatial interest points. Each row indicates a different combination of vocabularies in
the concatenated word-frequency histogram. An “x” under a descriptor’s name indicates that a vocabulary based on this descriptor was
included in the test for the current row. A combination of SIFT, optical flow, and space-time gradient PCA vocabularies perform best for
the Sports and General data sets, while KTH performance is actually harmed by the inclusion of SIFT features.

STG-PCA Flow STG-Hist SIFT KTH Sports General
x x 71.6 41.5 22.3

x x 74.9 39.7 23.1
x x 72.6 42.2 23.0

x x x 75.9 41.1 24.3
x x 77.2 37.6 22.6

x x 82.9 38.2 23.7
x x x 82.6 42.7 24.3

Table 4. Nearest Neighbor Results for Concatenated Word-Frequency Histograms. See Table 3 for an explanation of notation.

Specifically, we use the half of the database correspond-
ing to the d1 and d3 videos for 25 subjects performing 6
actions each. When classifying a given test video from one
subject, only videos from the 24 other subjects are used to
train the classifier. In all tests, the query was excluded from
unsupervised vocabulary building. The principal compo-
nent vectors used in the space-time gradient PCA descrip-
tor (for all videos in the KTH, Sports, and General datasets)
were derived from 6 videos in the unused half of the KTH
dataset.

8. Conclusion

In this paper, we have described three main contribu-
tions. We exceed the state of the art on the standard KTH
human activity recognition database. We explore a wide
range of combinations of spatial, temporal, and spatio-
temporal interest points with a number of descriptors based
on both motion and appearance and show that a combina-
tion of motion and appearance descriptors outperforms ei-
ther individually on several datasets. Finally, we are making
available a unique dataset of online videos.
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