
Inferring Temporal Order of Images From 3D Structure

Grant Schindler Frank Dellaert
Georgia Institute of Technology

{schindler,dellaert}@cc.gatech.edu

Sing Bing Kang
Microsoft Research, Redmond, WA

SingBing.Kang@microsoft.com

Abstract

In this paper, we describe a technique to temporally sort
a collection of photos that span many years. By reasoning
about persistence of visible structures, we show how this
sorting task can be formulated as a constraint satisfaction
problem (CSP). Casting this problem as a CSP allows us to
efficiently find a suitable ordering of the images despite the
large size of the solution space (factorial in the number of
images) and the presence of occlusions. We present experi-
mental results for photographs of a city acquired over a one
hundred year period.

1. Introduction

Cameras and skyscrapers have now coexisted for more
than a century, allowing us to observe the development of
cities over time. We are interested in being able to automat-
ically construct a time-varying 3D model of a city from a
large collection of historical images. Such a model would
reflect the changing skyline of the city, with buildings cre-
ated, modified, and destroyed over time. It would also be
useful to historians and urban planners both in organizing
collections of thousands of images (spatially and tempo-
rally) and in generating novel views of historical scenes by
interacting with the time-varying model itself.

To extract time-varying 3D models of cities from histori-
cal images, we must perform inference about the position of
cameras and scene structure in both space and time. Tradi-
tional structure from motion (SFM) techniques can be used
to deal with the spatial problem, while here we focus on the
problem of inferring the temporal ordering for the images as
well as a range of dates for which each structural element
in the scene persists. We formulate this task as a constraint
satisfaction problem (CSP) based on the visibility of struc-
tural elements in each image. By treating this problem as a
CSP, we can efficiently find a suitable ordering of the im-
ages despite the large size of the solution space (factorial in
the number of images) and the presence of occlusions.

Figure 1. Given an unordered collection of photographs, we infer
the temporal ordering of the images by reasoning about the visi-
bility of 3D structure in each image.

2. Related Work

SFM is now a well-studied problem, and the early stages
of our approach proceed very much in the same manner
as in [11], recovering calibrated cameras and the 3D point
locations based on 2D correspondences between images.
Time-varying SFM problems have been studied in the con-
text of ordered image-sequences of objects in motion [7],
while we work with an unordered (both spatially and tempo-
rally) collection of images. Although reasoning about vis-
ibility and occlusions has previously been applied to view
synthesis from multiple images [8], surface reconstruction
[13], and model-based self-occlusion for tracking [10], it
has not been used in the context of temporal sorting.

The earliest work on temporal reasoning involved the
development of an interval algebra describing the possi-
ble relationships between intervals of time [1]. A number
of specific temporal reasoning schemes were later captured
by temporal constraint networks [3] which pose the tem-
poral inference problem as a general constraint satisfaction
problem. Such networks are often used for task scheduling,
given constraints on the duration and ordering of the tasks.
Efficient solutions to temporal constraint networks rely on
sparsity in the network, whereas our problem amounts to
handling a fully connected network. Uncertainty was later
introduced into temporal constraint networks [4, 5, 2] by re-
laxing the requirement that all constraints be fully satisfied.



Figure 2. Overview of Approach. A fully automated system for
building a 4D model (3D + time) of a city from historical pho-
tographs would consist of all these steps. Here, we concentrate on
the highlighted steps of visibility reasoning and constraint satis-
faction to infer a temporal ordering of images which can then be
used to construct the 4D model.

3. Overview of Approach

We are interested in inferring the temporal ordering of
images as one step in a system for producing time-varying
3D models of cities from historical photographs. As sum-
marized in Figure 2 the process begins by performing fea-
ture detection and matching on a set of input photographs,
followed by SFM to recover 3D points and camera poses.
The feature detection and SFM steps are beyond the scope
of this paper and we do not discuss them in detail here, other
than to say that in this work the feature detection and match-
ing are performed manually, while SFM is automatic.

In this paper, we focus on the problems of visibility rea-
soning, temporal ordering, and time-varying 3D model con-
struction as highlighted in Figure 2. Our method takes 3D
points and camera poses as input and uses them to compute
a matrix describing the visibility of each 3D point in each
image (Section 4). The temporal ordering of the images is
then recovered by reordering the columns of this visibility
matrix in a CSP framework (Section 5). Finally, the inferred
temporal ordering is used to visualize a 4D model (space +
time) of the changing city (Section 6).

Figure 3. Point Classification. In each image, every 3D point is
classified as observed (blue), missing (red), out of view (white)
or occluded (white). The missing points belong to buildings that
do not yet exist at the time the photograph was taken. Classi-
fications across all images are assembled into a visibility matrix
(right) which is used to infer temporal ordering. Each column of
the visibility matrix represents a different image, while each row
represents the visibility of a single 3D point across all images.

4. Visibility Reasoning

The problem we will address is inferring the temporal
ordering of a set of n un-ordered images I1..n registered to
a set of m 3D points X1..m. The key to inferring temporal
order from a collection of historical urban images is that
different sets of 3D structures exist in the same place in the
world at different points in time. Thus, we must determine
which structures exist in each image, and to do this we must
reason about the visibility of each 3D point in each image.
We show here how to encode the information provided by
each image Ij about every 3D point Xi in a visibility matrix.

4.1. Visibility Classification

To determine whether a building exists at the time an
image was taken, we reason about the visibility of each 3D
point on that building. Assuming known projection matri-
ces P1..n for each of the n cameras C1..n corresponding to
images I1..n, every 3D point can be classified in each image
as observed, missing, out of view, or occluded as fol-
lows. If a measurement uij exists for point Xi in image Ij ,

the point is observed. If the projection xij = Pj

[
Xi

1

]
of point Xi in image Ij falls outside the field of view of
the camera (as defined by the width and height of the cor-
responding image), the corresponding point is classified as
out of view for that image. If the projection xij is within
the field of view of the camera but no measurement uij

exists, the point may be classified either as missing or
occluded, and further work is required to determine which
classification is correct (see Section 4.2).



The intuition behind this classification is that we want to
know whether the physical structure corresponding to point
Xi existed at the time that image Ijwas captured. If it does
not appear where we expect it to be, either it did not exist at
the time (missing) or else something is blocking our view
of it (occluded). We discuss how to distinguish between
these two cases in the next section.

4.2. Occlusion

We can also use occlusion reasoning to determine why
a building might not appear in a given image. To this end,
we assume that the 3D points X1..m correspond to a sparse
sampling of the surface of a number of solid structures in the
scene. For every triplet of points, the triangle XaXbXc that
they define may or may not lie along the surface of a solid
structure. If we can find a triangulation of these points that
approximates the solid structure, the faces of such a mesh
will occlude the same set of points occluded by the physical
structure, and these occluding faces can be used to distin-
guish between points that are missing and out of view.

Inspired by [6] and the image-consistent triangulation
method of [9], we proceed as follows: For each image
Ij , we compute the Delaunay triangulation of the measure-
ments uij in that image. Each 3D triangle corresponding to
a face in the Delaunay triangulation is a potential occluder
and for each triangle, we test whether it fails to occlude any
observed points in the scene. That is, if a face is intersected
by a line segment OjXi from any camera’s center of pro-
jection Oj to any observed 3D point Xi corresponding to a
measurement uij , it is removed from the potential pool of
occluders. The intuition behind this approach is that if the
triangle was a true occluder, it would have blocked such a
measurement from being observed. After testing all faces
against all observed points Xi in all images Ij , we are left
with a subset of triangles which have never failed to block
any 3D point from view, and we treat these as our occluders.

To determine whether a point Xi is missing or occluded
in a given image Ij , we construct a line segment from the
center of projection Oj of camera Cj to the 3D point Xi.
If this line segment OjXi intersects any of the occluding
triangles, the point is classified as occluded. Otherwise the
point is classified as missing, indicating that the point Xi

did not exist at the time image Ijwas captured.

4.3. Visibility Matrix

Finally, we can capture all this information in a conve-
nient data structure—the visibility matrix. We construct an
m × n visibility matrix V indicating the visibility of point
Xi in image Ij as

vij =

 +1 if Xi is observed in Ij

−1 if Xi is missing in Ij

0 if Xi is out of view or occluded in Ij

(a) violates constraints

(b) satisfies constraints (c) satisfies constraints

Figure 4. Visibility constraints. The columns of the visibility ma-
trix must be reordered such that the situation in (a) never occurs
– it should never be the case that some structure is visible, then
vanishes, then appears again. Rather, we expect that buildings are
constructed and exist for some amount of time before being de-
molished as in (b). Note that the constraint in (a) does not rule out
the situation in (c) where structure becomes occluded.

See Figure 3 for an example of such a visibility matrix. In
all figures, the value +1 is indicated with a blue dot, −1
with a red dot, and 0 with a white dot. Note that the columns
of such a matrix correspond to entire images, while the rows
correspond to single 3D points.

5. Constraint Satisfaction Problem

We pose the temporal ordering problem as a constraint
satisfaction problem (CSP), where constraints are applied
to the visibility matrix of the given scene. Specifically,
once a visibility matrix V is constructed, the temporal or-
dering task is transformed into the problem of rearranging
the columns of V such that the visibility pattern of each
point is consistent with our knowledge about how buildings
are constructed. Our model assumes that every point Xi is
associated with a building in the physical world, and that
buildings are built at some point in time TA, exist for a fi-
nite amount of time, and may be demolished at time TB to
make way for other buildings. We also assume that build-
ings are never demolished and then replaced with an iden-
tical structure. These assumptions gives rise to constraints
on the patterns of values permitted on each row in V .

The constraints on the visibility matrix can be formalized
as follows: on any given row of V , a value of −1 may not
occur between any two +1 values. This corresponds to the
expectation that we will never see a building appear, then
disappear, then reappear again, unless due to occlusion or
being outside the field of view of the camera (see Figure
4). The valid image orderings are then all those that do not
violate this single constraint.

Because we have expressed the temporal ordering prob-



Figure 5. Local Search starts from a random ordering and swaps columns and groups of columns in order to incrementally decrease the
number of constraints violated. Here, 30 images are ordered by taking only 10 local steps.

lem in terms of constraints on the visibility matrix, we
can use the general machinery of CSPs to find a solution.
A common approach to CSPs is to use a recursive back-
tracking procedure which explores solutions in a depth first
search order by assigning an image Ij to position 1, then
another image to position 2, etc. At each step, the partial so-
lution is checked and if any constraints are violated, the cur-
rent branch of search is pruned and the method “backtracks”
up one level to continue the search, having just eliminated
a large chunk of the search space. Given that our problem
has n! solutions (i.e., factorial in the number of images n),
this method becomes computationally intractable for even
relatively small numbers of images.

5.1. Local Search

CSPs can also be solved using a local search method to
get closer and closer to the solution by starting at a random
configuration and making small moves, always reducing the
number of constraints violated along the way. This solution
has been famously applied to solve the n-queens problem
for 3 million queens in less than 60 seconds [12].

For our problem, a local search is initialized with a ran-
dom ordering of the images, corresponding to a random or-
dering of the columns in the visibility matrix V . At each
step of the search, all local moves are evaluated. In our
case, these local moves amount to swapping the position of
two images or of two groups of images by rearranging the
columns of the matrix V accordingly. In practice, swapping
larger groups of images allows solutions to be found more
quickly, preserving the progress of the search by keeping
constraint-satisfying sub-sequences of images together.

During local search, we consider a number of candidate
orderings of the columns of the visibility matrix, where dif-
ferent arrangements of columns will violate different num-
bers of constraints. As described above, a constraint is vio-
lated if, on a given row, a point is classified as missing be-
tween two columns in which it was observed. The best lo-
cal move is then the move that results in the ordering that vi-
olates the fewest constraints of all the candidate local moves
being considered. If there is no move which decreases the
number of constraints violated, we reinitialize the search
with a random ordering and iterate until a solution is found.
Once an ordering of the columns is found that violates no
constraints, the temporal ordering of the images is exactly
the ordering of the columns of the visibility matrix. Figure
5 demonstrates the progress of such a local search.

5.2. Properties of Ordering Solutions

Solving the above constraint satisfaction problem may
give us more than just one possible temporal ordering of the
images. For the n images, there may be r eras in which
different combinations of structures coexist. If r < n, there
is more than one solution to the constraint satisfaction prob-
lem. In particular, any two images captured during the same
era may be swapped in the ordering without inducing any
constraint violations in the visibility matrix.

In addition, there is a second class of solutions for which
time is reversed. This is because any ordering of the
columns that satisfies all constraints will still satisfy all con-
straints if the order of the columns is reversed. In practice,
one can ensure that time flows in the same direction for all
solutions by arbitrarily specifying an image that should al-
ways appear in the first half of the ordering. This is anal-
ogous to the common technique of fixing a camera at the
origin during structure from motion estimation.

5.3. Dealing with Uncertainty

The above formulation depends upon an explicit decision
as to the visibility status of each point in each image, and
cannot deal with misclassified points in the visibility matrix.
For example, if a point is not observed in an image, it is
crucial that the point receives the correct label indicating
whether the point no longer existed at the time the image
was taken, or whether it was simply occluded by another
building. If a single point is misclassified in one image,
it may cause all possible orderings to violate at least one
constraint, and the search will never return a result.

The ideal case, in which there are no occlusions and no
points are out of view, will rarely occur in practice and there
are a number of ways a point might be misclassified:

• Points that really should have been observed might,
due to failure at any point during automated feature
detection or due to missing or damaged regions of his-
torical images, be classified as missing.

• Points that were occluded by un-modeled objects
(such as trees or fog) may falsely be labeled missing.

• Points that were really occluded may fail to be blocked
by occlusion geometry due to errors in SFM estima-
tion, and instead be falsely labeled as missing.

• Points that are truly missing may be falsely explained
away as occluded.



In practice, some combination of all these errors may occur.
We achieve robustness to misclassified points without in-

troducing any additional machinery. CSPs can implicitly
cope with this kind of uncertainty by relaxing the require-
ment that all constraints be satisfied. We modify the local
search algorithm to return the ordering that satisfies more
constraints than any other after a fixed amount of searching.
Under such an approach, we can no longer be absolutely
certain that the returned solution is valid, but we gain the
ability to apply the approach to real-world situations.

5.4. Structure Segmentation

In order to build a convincing 3D model of a city, we
need to segment the 3D point cloud that results from SFM
into a set of solid structures. In fact, we can use the visibil-
ity matrix V to extract such a building segmentation directly
from the recovered image ordering. Once the columns have
been reordered using local search, similar visibility patterns
become apparent across the rows of the matrix. This is due
to the fact that multiple 3D points originate from the same
physical structures in the world, and thus come in and out
of existence at the same time. This is made more appar-
ent by reordering the rows of the visibility matrix to group
points that share times of appearance TA and disappearance
TB . Such a reordering amounts to segmenting the 3D point
cloud into disjoint sets. By taking the 3D convex hull of
each cluster of points, we get approximate scene geometry
which can be textured and used for further synthesis of new
views in space and time (see Figure 6).

6. Results

We tested our method on a set of images of a city col-
lected over the period from 1897 to 2006. For the results
presented here, feature detection and matching were per-
formed manually. Given a set of 2D correspondences across
images, the remaining steps of the algorithm beginning with
SFM (see Figure 2) are performed automatically.

In our first experiment, we find a temporal ordering for
6 images of a scene containing 56 3D points (Figure 7). In
this case, we purposely chose photographs with clear views
of all structure points, meaning that none of the points are
misclassified in the visibility matrix and an exact solution
to the ordering is guaranteed. Due to the small number of
images, we perform an exhaustive back-tracking search to
find all possible ordering solutions. Back-tracking search
finds that out of the 6! = 720 possible orderings, there are
24 orderings which satisfy all constraints, one of which is
shown in Figure 7. The 24 solutions are all small variations
of the same ordering—images 1 and 2 may be interchanged,
as may images 4, 5, and 6, and finally the entire sequence
may be reversed such that time runs backwards. For this
small problem, the search takes less than one second.

(a) (b) (c) (d)

Figure 6. Structure Segmentation. Beginning from a random
ordering of the visibility matrix (a), local search re-orders the
columns to the correct temporal ordering (b), and then rows are re-
ordered to group 3D points that appear and disappear at the same
times (c). We compute 3D convex hulls of each group of points to
get solid geometrical representations of buildings in the scene (d).

In our second experiment, we deal with a more difficult
group of 20 images of a scene consisting of 92 3D points
(Figure 8). These images contain a number of misclassified
points due to occlusions by trees and un-modeled buildings,
as well as errors in the estimation of 3D point locations and
camera positions by SFM. As such, we do not expect to find
an ordering that satisfies all constraints, so we instead use
1000 iterations of local search to find the ordering which
violates the fewest constraints. For each iteration of local
search, we begin from a new random ordering of the im-
ages. Note the number of iterations of search (1000) is con-
siderably smaller than the number of possible orderings, in
this case 20! ≈ 2.4 × 1018. This local search returns an
ordering (Figure 8) for which constraints are violated on 15
of the 92 rows of the visibility matrix. In the absence of any
ground truth dates for the images, and with no exact solu-
tion to the CSP in this case, it can be difficult to evaluate the
quality of the returned ordering. However, despite the large
number of constraints violated, the ordering returned is con-
sistent both with the sets of buildings which appear in each
image and with the known dates of construction and demo-
lition for all modeled buildings in the scene. The ordered
visibility matrix for this experiment is shown in Figure 9.

In our third experiment, to simulate a larger problem, we
synthesize a scene containing 484 randomly distributed 3D
points and 30 cameras placed in a circle around the points.
Each point is assigned a random date of appearance and dis-
appearance, while each camera is assigned a single random
date at which it captures an image of the scene. The result-
ing synthetic images only show the 3D points that existed
on the date assigned to the corresponding camera. The size
of the solution space (30! = 2.65× 1032) necessitates local
search for this problem. Starting from a random ordering,
a solution that violates no constraints is found just 26 lo-
cal moves away from the random initialization, taking less
than one minute of computation. In contrast to the previous



Figure 7. Inferred temporal ordering of 6 images. In the case where there are no occlusions of observed points, we can guarantee that
a solution exists that violates no constraints. The ordering shown is one of 24 orderings that satisfy all constraints. The other solutions
involve swapping sets of images that depict the same set of structures and reversing the direction of time.

Figure 8. Inferred ordering of 20 images. Despite many misclassified points, the presence of un-modeled occlusions such as trees, and a
solution space factorial in the number of images (20! ≈ 2.4 × 1018), an ordering consistent with the sets of visible buildings is found by
using local search to find the ordering that violates the fewest constraints. In such a case, there is no single solution which satisfies all
constraints simultaneously.

experiment, a solution is quickly found for this synthetic
scene (without the need to reinitialize the search) because
no points are misclassified for the synthesized images.

Finally, we use the structure segmentation technique de-
scribed in Section 5.4 to automatically create a time-varying
3D model from the 6 images in Figure 7. After ordering
the columns of the visibility matrix to determine temporal
order, we reorder the rows to group points with the same
dates of appearance and disappearance. We then compute
the convex hulls of these points and automatically texture
the resulting geometry to visualize the entire scene (see Fig-
ure 10). Textures are computed by projecting the triangles
of the geometry into each of the 6 images and warping the
corresponding image regions back onto the 3D geometry.

7. Discussion

The computation time required for local search depends
upon several factors. The main computational cost is com-
puting the number of constraints violated by a given order-
ing of the visibility matrix, which increases linearly with m
the number of points in the scene and n the number of im-
ages being ordered. In addition, at each step of local search,
the number of tested orderings increases with n2 since there
are (n)(n−1)

2 ways to select two images to be swapped.
As demonstrated in the above experiments, the amount

of computation also varies inversely with the number of
valid orderings for a given visibility matrix. For ordering
problems that admit many solutions, the random initializa-
tion of local search will often be close to some valid order-
ing, and will thus solve the problem quickly. This is, in
fact, the key to the success of local search on the n-queens
problem of [12], where the number of solutions actually in-
creases with the size of the board. However, when there are
very few solutions (or no exact solution, as in the above 20-
image experiment), local search may require a large number
of iterations until a random ordering is chosen that can reach

Figure 9. Ordered visibility matrices for sets of 6 images (left) and
20 images (right). The ordering of the 6 images on the left was
found with backtracking search and satisfies all constraints. The
ordering of the 20 images on the right violates the fewest con-
straints of all solutions found with 1000 iterations of local search.
In the latter case, misclassified points caused by un-modeled oc-
clusions lead to a situation in which no ordering can simultane-
ously satisfy all constraints.

the true solution using only local moves.

Finally, note that the nature of the dates we infer for
scene structure is abstract. For example, consider the build-
ing depicted in the first image in Figure 8. Rather than in-
ferring that this building existed from 1902 to 1966, we can
only infer that it existed from the time of Image 1 to the
time of Image 13 (where images are numbered by their po-
sition in the inferred temporal ordering). Without additional
knowledge, this is the most we can confidently say about
when the building existed. When a human inspects a histori-
cal photograph, he or she may assign a time to it by identify-
ing objects in the scene with known dates of existence—this
may include known buildings, but also more abstract con-
cepts such as the style of automobiles, signs, or the cloth-
ing of people depicted in the image. This suggests that a
machine learning approach may be required if we hope to
assign estimates of absolute dates to each image.



Figure 10. Time-varying 3D model. Here, we see the scene as
it appeared at 4 different times from the same viewpoint. This
result is generated automatically given 2D point correspondences
across 6 unordered images as input. We perform SFM, determine
occluding surfaces, compute the visibility matrix, solve the CSP
using local search to infer temporal ordering, group points based
on common dates of existence, compute 3D convex hulls, and tex-
ture triangles based on where they project into each image.

8. Conclusion
In this paper, we have shown that constraint satisfac-

tion problems provide a powerful framework in which to
solve temporal ordering problems in computer vision, and
we have presented the first known method for solving this
ordering problem. The largest obstacle to a fully automated
system remains the variety of misclassifications enumerated
above. In future work, we hope to extend the occlusion rea-
soning of our method to deal with occlusions by objects not
explicitly modeled in the scene, such as trees, by consid-

ering image appearance around unmeasured projections of
3D points. In addition, with increasing numbers of misclas-
sified points, structure segmentation decreases in quality, as
fewer and fewer points have precisely the same dates of ex-
istence. We hope to find more robust methods of segment-
ing scene structure in order to automatically create high
quality, time-varying 3D models from historical imagery.

Acknowledgments

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. IIS-0534330.

References
[1] J. F. Allen. Maintaining knowledge about temporal intervals.

Commun. ACM, 26(11):832–843, 1983.

[2] S. Badaloni, M. Falda, and M. Giacomin. Integrating quan-
titative and qualitative fuzzy temporal constraints. AI Com-
mun., 17(4):187–200, 2004.

[3] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49(3):61–95, May 1991.

[4] D. Dubois, H. Fargier, and P. Fortemps. Fuzzy scheduling:
Modelling flexible constraints vs. coping with incomplete
knowledge. European Journal of Operational Research,
147:231–252, 2003.

[5] D. Dubois, H. Fargier, and H. Prade. Possibility theory in
constraint satisfaction problems: Handling priority, prefer-
ence and uncertainty. Applied Intelligence, 6:287–309, 1996.

[6] O. D. Faugeras, E. Le Bras-Mehlman, and J. D. Boisson-
nat. Representing stereo data with the Delaunay triangula-
tion. Artif. Intell., 44(1-2):41–87, 1990.

[7] M. Ge and M. D’Zmura. 4D structure from motion: a com-
putational algorithm. In Computational Imaging., pages 13–
23, June 2003.

[8] D. Jelinek and C. J. Taylor. View synthesis with occlu-
sion reasoning using quasi-sparse feature correspondences.
In Eur. Conf. on Computer Vision (ECCV), pages 463–478,
2002.

[9] D. D. Morris and T. Kanade. Image-consistent surface tri-
angulation. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 332–338, 2000.

[10] L. Sigal and M. J. Black. Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 2041–2048, 2006.

[11] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3D. In SIGGRAPH, pages 835–
846, 2006.

[12] R. Sosic and J. Gu. 3,000,000 queens in less than one minute.
SIGART Bull., 2(2):22–24, 1991.

[13] C. J. Taylor. Surface reconstruction from feature based
stereo. In Intl. Conf. on Computer Vision (ICCV), page 184,
2003.


